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Granular flow trapped on an incline: Dynamics of the sandpile

B. Bonnier, J.-F. Boudet, and H. Kellay
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Experimental results have been recently reported for the dynamics of two-dimensional sand fronts formed by
the trapping of a flow running down an inclined plane. We explain the scaling law observed for the front
profiles and give their analytic expression using a simple phenomonelogical model for interfacial shapes and
interfacial flows of granular materials.
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I. INTRODUCTION

In the study of granular materials@1#, the flow of granular
matters on inclined surfaces is of fundamental interest@2#.
Many investigations have been devoted to the uniform
gime @3,4# and more generally to the time evolution of th
surface of a sandpile@5,6#. In this context, the understandin
of the formation and evolution of sand fronts, within ph
nomenological models of sandpiles surfaces@6#, brings forth
some fundamental problems as discussed recently@7#. In the
framework of propagating sand fronts, the results of a se
experiments allowing the study of self-similar advanci
fronts have been recently reported@8#. In these experiments
jet of granular materials running down an inclined planeP
ends up being trapped and then feeds a heap starting to
upstream. The observed advancing sand fronts have cu
self-similar shapes allowing a direct test of the validity a
applicability of such models.

Our aim in this work is to give a phenomenological ana
sis of the experimental results of Ref.@8# which are recalled
in Sec. II. First, we propose an explanation of the se
similarity property of the sand fronts as a consequen
through the mass and energy conservation laws, of the
perimental conditions, independent of any specified mo
This is done in Sec. III within the formalism proposed b
Bouchaud, Cates, Ravi Prakash, and Edwards~BCRE! in
Ref. @6# which recognizes two populations of grains, imm
bile and rolling with a conversion term that governs ho
mobile grains become static and vice versa, and maintai
continuum description of the dynamics of the sandpiles p
files. Taking into account the particularities of the expe
mental conditions, we do not however use the BCRE mo
as in the case of avalanches, since the self-similarity prop
allows a direct determination of all the physical quantit
once the deposition term or conversion term is known.
thus propose an ansatz to describe this term and give in
III the associated sandpile profiles. In Sec. IV we present
study of the dynamics of the rolling species. The differen
arising between the standard BCRE model and the pre
case are discussed in Sec. V with our conclusion.

II. SUMMARY OF EXPERIMENTAL RESULTS

The experiments we wish to consider for this theoreti
analysis have been presented recently by Boudetet al. @8#. In
these experiments~see Fig. 1!, sand running down an in
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clined planeP ~sandwiched between two transparent fl
plates so that the geometry is quasi-two-dimensional! comes
to a halt at a certain distanceL(u) from the injection point
due to friction against the flat plane. Once the sand come
a stop, a small pile is constructed by the incoming flux
sand and a front of static sand starts to climb up the slo
The quasi-two-dimensional sand fronts obtained experim
tally are self-similar in time as shown in Fig. 2. Here seve
profiles of the dynamic fronts climbing up the inclined pla
are shown at different instants of time. As the front mov
upstream, its base length and its height grow in time. T
growth is self-similar as shown in the upper left inset of th
figure. All the profiles from the different instants of time ca
be collapsed onto a single curve once the two axes have
divided by the base lengthX(t). The shape of these san
fronts is characterized by a linear tail with a time indepe
dent anglef0 with the inclined plane and a curved fron
whose initial tangentT15tanf1 is also constant in time. A
consequence of the collapse of the different profiles is t
the base lengthX(t) grows ast1/2 as illustrated in the uppe
right inset of Fig. 2.

The self-similarity of the sand fronts appears to be p
sible when the inclination angleu of P with the horizontal is
varied in the range 8°du<u l , u l being the maximal incli-
nation allowing trapping. The results of these experime
can be summarized as follows, where the dynamics are
scribed in the orthogonal frame (OX,OZ) whoseOX axis is
alongP with upstream orientation, the trapping event cor
sponding to the valuesx5z5t50 ~see Fig. 1!. As men-
tioned above the base length of the sandpile@0<x
<X(t), z50# increases asX(t)'At and its upper profiles
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FIG. 1. Schematic of the sand fronts: An incoming flux of sa
with velocity v down an inclined planeP gets trapped far down-
stream and a sand front starts to grow upstream.
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FIG. 2. Different sand fronts taken at differen
instants of time. Insets: Left, collapse of the pr
files onto a single curve once the axes have be
rescaled by the base lengthX(t) for two values of
the inclination angle. Right: Variation ofX2(t) vs
time for different inclination angles.
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noted h(x,t) @0<x<X(t), z5h(x,t)# are self-similar in
time. More precisely with a reduced variabley and a reduced
profile H(y) one obtains the following scaling law:

x5yX~ t !, 0<y<1, h~x,t !5X~ t !H~y!. ~1!

The reduced profileH(y) has features independent of th
inclination u, i.e., a strongly curved front part (0.8ay<1)
corresponding to the deposition of the main part of the
coming flow and a quasilinear and very flat tail in its rema
ing part. Iff0 denotes the angle between this tail and theOX
axis, it is found thatT05tanf0 depends uponu according to

T0~u!gl tan~u l2u!, ~2!

wherel andu l are constants fixed by the granular materia
For sandl.0.460.05, u l.27°63° andl.0.5560.05, u l
.25°63° for glass beads, which shows thatf0 decreases a
u increases and is always smaller than a maximal value
f0.8°. In addition, it is stressed that such a behavior
observed only when the incoming flow is naturally trappe
its deceleration being due to friction following the Coulom
law, since the stopping lengthL(u) measured alongOX be-
tween injection and arrest varies asL(u)5V0

2/2ga(u) where
a(u)5m cosu2sinu, m being a dynamic friction coefficient
with a constant value~m.0.46.tan25° for sand!. Arguments
from energy balance are also given suggesting thatT0(u)
;a(u), which from Eq.~2! favors a valueu l.25° for sand.
Finally, under various assumptions including scaling, a
rametrization for the reduced profileHP(y)5T0@y
2sinh(ny)/sinh(n)# is proposed in order to reproduce the da
whenn is properly adjusted.

III. DETERMINATION OF THE SANDPILE PROFILES

In this section we first show that the scaling, Eq.~1!,
appears as a consequence of the mass and energy con
tion laws for a decelerating flow. To derive these relatio
normalizing the density to one, we consider in the spirit
Ref. @6# ] th(x,t)5G(x,t) as the mass added per unit time
the sandpile at the point„x,h(x,t)…. The complete deposition
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of the incoming flow on the sandpile then reads

E
0

X(t)

G~x,t1d!dx5Q, ~3!

whereQ is the constant injected mass per unit time andd the
time delay needed by the rolling species to travel fromX(t)
to x. We shall use this mass conservation relation in the
stantaneous approximationd50, which is justified in the fol-
lowing section, and systematically applied in the followin

A kinetic energy conservation law can also be deriv
according to the following assumptions. First, we recall th
the incoming flow decelerates according to the friction Co
lomb law and stops at the origin. Its velocityv i just before
impacting the sandpile atx5X(t) is then known. At impact
some dissipation may occur that we take into account
assuming that just after impact the mean velocity of the r
ing species becomesv r5ev i wheree is a restitution coeffi-
cient, practically constant according to Ref.@9#, for example,
e50.460.05. The kinetic energy then becomesE
5gQX(t)e2a(u) and this energy is assumed to be lost
friction along the sandpile profile. In order to express t
work of the friction forces one writes the Coulomb law wi
coefficientm8 ~m8 refers to friction of sand on sand whilem
refers to friction of sand against the flat plate! on some arc of
the profileh(u,t) with x<u<X(t), the constant mass sub
mitted to friction along this arc beingG(x,t) by definition.
Summing all such arcs for 0<x<X(t) gives the total fric-
tion work assumed to be equal toE. This kinetic energy
conservation law then reads

E
0

X(t)

G~x,t !$a8~u!@X~ t !2x#1b~u!h~x,t !%dx

5QX~ t !e2a~u!, ~4!

wherea8(u)5m8cosu2sinu andb(u)5m8sinu1cosu.
2-2
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FIG. 3. A fit of the profile shape~different
profiles have been collapsed onto the same cu
here! using the expression in the text~b520!.
Inset: Sketch of the dependence of the avera
velocity of the rolling grains along the sand fron
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Now one can observe that theX(t) dependence of Eq
~3,4! can be eliminated ifh(x,t) andG(x,t) have appropriate
scaling forms:h(x,t) must obey Eq.~1! andG(x,t) must be
given by

G~x,t !5Qg~y!/X~ t !, ~5!

whereg(y) is some function ofy5x/X(t) alone. The con-
servation laws~3! and ~4! then become time-independe
constraints:

E
0

1

g~y!dy51,

E
0

1

g~y!@a8~u!~12y!1b~u!H~y!#dy5e2a~u!. ~6!

Our next task is to specifyX(t) and the reduced profile
H(y). One can easily obtainX(t) from the global mass con
servation if the mass of the rolling species is negligible~this
is checked in the following section!, since then the injected
mass Qt is equal to the sandpile mass*0

X(t)h(x,t)dx
5X2(t)I H with I H5*0

1H(y)dy. This determinesX(t) in
agreement with the experimental data:

X~ t !5Aat, a5Q/I H . ~7!

Having fixed X(t), such thatX8(t)5a/2X(t), one obtains
from the scaling form, Eq. ~1!, ] th(x,t)5a@H(y)
2yH8(y)#/2X(t) which is equal toG(x,t). ~Here the prime
symbol indicates total derivative in the function argumen!
Using for G(x,t) the expression given in Eq.~5!, one ob-
tains, since the X(t) factor cancels, H(y)2yH8(y)
52I Hg(y). Integrating this relation with the boundary co
dition H(y51)50 gives

H~y!52I HyE
y

1

u22g~u!du. ~8!

In view of the central role devoted tog(y), we choose for
it a physically realistic ansatz allowing simple integrations
06130
Eqs. ~6! and ~8!. Most of the deposition occurring in th
region y.1, our choice isg(y)5(b11)yb, whereb is a
free parameter and where the factor (b11) ensures the nor
malization appearing in Eq.~6!. ThenH(y) given by Eq.~8!
becomesH(y)52I H@(b21)/)(b11)](y2yb) and it can
be checked on this form that the relationI H5*0

1H(y)dy is
identically fulfilled: at this stageH(y) depends upon two
free parametersI H and b, the kinetic energy constraint re
maining to be applied. These two parameters can be
pressed in term of the more physical quantitiesT0 and T1
introduced in the first section and whose values are exp
mentally known (T0 is small andT1.1 and roughly inde-
pendent ofu!. The result of this substitution is

H~y!5T0~y2yb!, b511T1 /T0.1/T0 ,

I H5T1T0/2~T112T0!.T0/2. ~9!

It thus appears thatb has to be large~it varies from 10 to 32
according to the inclination angle!, and this simplifies the
remaining constraint in Eq.~6! which becomes independen
of b in the largeb limit. The energy conservation thus fixe
T0 according to

T052e2a~u!/b~u!.2e2tan~u l2u!, ~10!

where the last expression in Eq.~10! arises if m8.m
5tanu l . This is in agreement with the experimentally o
served behavior given in Eq.~2! and gives the physica
meaning of the parameterl, l52e2. For sand, a best fit o
these data withu l525°° givesl50.37, and for glass bead
the best fit isu l524°° with l50.54, giving for the restitu-
tion coefficient the realistic valuese50.43 ande50.52, re-
spectively. Figure 3 displays a fit to the experimentally o
served profiles using experession~9! for H(y). The
agreement between the two shapes is remarkable.

IV. STUDY OF THE ROLLING SPECIES

In addition to the deposition termG(x,t), the width
r (x,t) and the mean velocityvx(x,t) of the rolling grains on
2-3
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top of the sandpile, which have been introduced in Sec
are the physical quantities used in the BCRE model to
scribe the flow. These quantities are not experimentally m
sured and our aim here is to show that they can be derive
it is the case for the sandpile profile, in terms ofg(y). As a
by-product these results justify the simplifications used in
preceding section.

We first consider the quantitym(x,t)52vxr (x,t) which
is the rolling mass at abscissax per unit time. In the instan-
taneous approximation m(x,t)5Q2*x

X(t)G(u,t)du
5*0

xG(u,t)du. Inserting in the last integral Eq.~5! for
G(u,t) gives m(x,t)5Q*0

yg(u)du and for the total rolling
massQR one findsQR5*0

X(t)m(x,t)dx5*0
X(t)G(x,t)@X(t)

2x#dx. Within the chosen ansatz forg(y) these relations
become

m~x,t !5Qyb11, QR5QX~ t !/~b12!, ~11!

which in particular indicate that the total rolling mass r
mains small compared to the sandpile mass.

We now turn to the determination of the mean velocity
the flow and we denote byv(x,t) its absolute value. We hav
shown in the preceding section that its valuev r just after the
impact point can be derived from energy consideratio
and is assumed to be given byv„X(t),t…5v r
5eX(t)1/2@2ga(u)#1/2. More generally,v(x,t) can be ob-
tained for anyx by equating the kinetic energy variation an
the friction work done on the sandpile between the poi
X(t) and x. As in the preceding section, this work can
derived in terms ofG(x,t) andh(x,t) which are now given.
Using Eq.~10! for T0 and some simplifications allowed i
the largeb regime, one finds the following scaling expre
sion:

v~x,t !5v r@y~22yb12!#1/25X~ t !1/2v~y!,

v~y!5e@2ga~u!y~22yb12!#1/2. ~12!

Assuming that this velocity is tangential to the sandpile p
file and remembering that the tangent angle at abscisx
can be written asf(y), its OX component readsvx(x,t)
52v(x,t)cosf(y).

The width r (x,t) of the rolling species is then given b
the relationr (x,t)52m(x,t)/vx(x,t) and we obtain the fol-
lowing scaling expression:

r ~x,t !5X~ t !21/2R~y!, R~y!5Qyb11/v~y!cosf~y!.
~13!

These relations indicate a rapid decrease of the width a
the impact region and a slower one for the velocity. T
functional shape of the velocity (v* 5v/v r) along the profile
is sketched in the inset of Fig. 3. This velocity starts out h
and decreases to zero at the stopping point. The decrea
the velocity has two different regions, a region near the fr
with a fast decrease and a region towards the tail with aAy
dependence.

We conclude this section by checking the consistency
the instantaneous approximation that we have used to de
the scaling forms of various physical quantitiesf (x,t)
06130
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5Xn(t)F(y) with 21<n<1. In this approximationd50,
where in realityd5*x

X(t)du/vx(u,t) is the time spent by the
rolling species to travel from the point„X(t),0… to the point
„x,h(x,t1d)…. The previous results show thatd
5X1/2(t)D(y) whereD(y)5*y

1du/v(u)cos„f(u)… and thus
f (x,t1d)5 f (x,t)@11O„X23/2(t)…#. The instantaneous ap
proximation thus gives correctly the leading behavior w
time of the considered quantities.

V. CONCLUSION

In this phenomenological analysis, the BCRE formalis
is used, but not in the usual way. We recall that in this mo
one considers a convective diffusion equation with diffus
constantD, which in our notations reads

~] t2D]x
2!r ~x,t !5]xm~x,t !2G~x,t !. ~14!

This equation is used in conjunction with a functional re
tion of the form

G~x,t !5r ~x,t !@A]xh~x,t !1B]x
2h~x,t !# ~15!

to determiner ,h, and G once the constantsA,B, and an
ansatz forvx are given. In our case, Eq.~14! is implicitly
satisfied as a convective equation since one can check
]xm(x,t)5G(x,t) and that its left-hand side member va
ishes likeX25/2(t). On the other hand, the Eq.~15! does not
hold as it appears thatA and B are time-dependent:A van-
ishes likeX21/2(t) and the leading term isB.X1/2(t). This
reflects the experimental conditions, where the diffusion
the rolling species or shift from the repose angle is not
sential for the dynamics of the sandpile profiles.

Before we conclude let us mention that Boutreux a
Raphael@10# considered the stop flow problem, where
layer of mobile grains hits a wall, with a modified version
the BCRE model. Their version takes into account the inh
ent differences between thick and thin mobile layers. Th
results show that for thick layers, a kink develops betwe
the immobile grains and the mobile one. For thin layers,
height of the mobile part increases linearly with the distan
from the wall. For intermediate thickness, the kink becom
blunt or slightly rounded. From these considerations, it
pears that the case studied here, where the front is roun
would fall in the category of intermediate thickness of t
mobile grains. It may be interesting to solve their model
the particular geometry considered here so a comparison
tween their assumed form for the conversion term and
one constructed here can be made. Since their conver
term has a simple form, it would be interesting to test it mo
carefully.

In conclusion, we have given an explanation of the sc
ing law observed in this experiment, and we have propose
phenomenological ansatz to describe the deposition me
nism. As a result it is possible to justify a simple analy
expression for the sandpile profile and to obtain a deta
description of its behavior under the variation of the inclin
tion angle. This description involves one parameterb which
is not fixed, contrarily toT0, in terms of physical quantities
2-4
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except through the relationb511T1 /T0 . It may be thus
possible to link the determination ofT1 to the stress tenso
properties of the sandpile in its frontal part where it is su
mitted to the constraint of the incoming flow. This howev
needs a new formulation, such as the one proposed in
@11#, based on hydrodynamic equations for the flow coup
hy

id

06130
-
r
ef.
d

with an order parameter equation describing the transi
between static and rolling species.
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