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Granular flow trapped on an incline: Dynamics of the sandpile
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Experimental results have been recently reported for the dynamics of two-dimensional sand fronts formed by
the trapping of a flow running down an inclined plane. We explain the scaling law observed for the front
profiles and give their analytic expression using a simple phenomonelogical model for interfacial shapes and
interfacial flows of granular materials.
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[. INTRODUCTION clined planeP (sandwiched between two transparent flat
plates so that the geometry is quasi-two-dimensjocanes
In the study of granular materidl&], the flow of granular to a halt at a certain distandg #) from the injection point
matters on inclined surfaces is of fundamental intef@gt  due to friction against the flat plane. Once the sand comes to
Many investigations have been devoted to the uniform rea stop, a small pile is constructed by the incoming flux of
gime [3,4] and more generally to the time evolution of the sand and a front of static sand starts to climb up the slope.
surface of a sandpilgs,6]. In this context, the understanding The quasi-two-dimensional sand fronts obtained experimen-
of the formation and evolution of sand fronts, within phe-tally are self-similar in time as shown in Fig. 2. Here several
nomenological models of sandpiles surfapgl brings forth  profiles of the dynamic fronts climbing up the inclined plane
some fundamental problems as discussed recgntlyn the  are shown at different instants of time. As the front moves
framework of propagating sand fronts, the results of a set ofipstream, its base length and its height grow in time. This
experiments allowing the study of self-similar advancinggrowth is self-similar as shown in the upper left inset of this
fronts have been recently reporte]. In these experiments a figure. All the profiles from the different instants of time can
jet of granular materials running down an inclined pldhe be collapsed onto a single curve once the two axes have been
ends up being trapped and then feeds a heap starting to gradivided by the base lengtX(t). The shape of these sand
upstream. The observed advancing sand fronts have curvdibnts is characterized by a linear tail with a time indepen-
self-similar shapes allowing a direct test of the validity anddent angle¢, with the inclined plane and a curved front
applicability of such models. whose initial tangent; =tand¢; is also constant in time. A
Our aim in this work is to give a phenomenological analy-consequence of the collapse of the different profiles is that
sis of the experimental results of Rg8] which are recalled the base lengti(t) grows ast? as illustrated in the upper
in Sec. Il. First, we propose an explanation of the self-right inset of Fig. 2.
similarity property of the sand fronts as a consequence, The self-similarity of the sand fronts appears to be pos-
through the mass and energy conservation laws, of the exsible when the inclination anglé of P with the horizontal is
perimental conditions, independent of any specified modelaried in the range 8% < 6,, 6, being the maximal incli-
This is done in Sec. lll within the formalism proposed by nation allowing trapping. The results of these experiments
Bouchaud, Cates, Ravi Prakash, and EdwaBIGRE) in can be summarized as follows, where the dynamics are de-
Ref. [6] which recognizes two populations of grains, immo- scribed in the orthogonal framé&©X,0Z) whoseO X axis is
bile and rolling with a conversion term that governs howalongP with upstream orientation, the trapping event corre-
mobile grains become static and vice versa, and maintains $ponding to the values=z=t=0 (see Fig. 1L As men-
continuum description of the dynamics of the sandpiles protioned above the base length of the sandpil@<x
files. Taking into account the particularities of the experi-<X(t), z=0] increases a¥X(t)~ Jt and its upper profiles
mental conditions, we do not however use the BCRE model
as in the case of avalanches, since the self-similarity property ]
allows a direct determination of all the physical quantities 4 Incoming flux
once the deposition term or conversion term is known. We
thus propose an ansatz to describe this term and give in Sec.
[l the associated sandpile profiles. In Sec. IV we present the
study of the dynamics of the rolling species. The differences
arising between the standard BCRE model and the present
case are discussed in Sec. V with our conclusion. (P)

IIl. SUMMARY OF EXPERIMENTAL RESULTS

The experiments we wish to consider for this theoretical FIG. 1. Schematic of the sand fronts: An incoming flux of sand
analysis have been presented recently by Boatat.[8]. In  with velocity v down an inclined plan® gets trapped far down-
these experimentgsee Fig. 1, sand running down an in- stream and a sand front starts to grow upstream.
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noted h(x,t) [0=x=<X(t), z=h(x,t)] are self-similar in of the incoming flow on the sandpile then reads
time. More precisely with a reduced varialyland a reduced
profile H(y) one obtains the following scaling law:

X()
x=yX(t), O0=y=1, h(xt)=XMOH(y). (1) fo F(x,t+)dx=Q, )

The reduced profildH(y) has features independent of the

inclination 6, i.e., a strongly curved front part (08/<1)  whereQ s the constant injected mass per unit time arttie
corresponding to the deposition of the main part of the intime delay needed by the rolling species to travel fr&()
coming flow and a quasilinear and very flat tail in its remain-to x. We shall use this mass conservation relation in the in-
ing part. If o denotes the angle between this tail and@¥  stantaneous approximatidi+0, which is justified in the fol-
axis, it is found thall ,=tan¢, depends upoi according to  |owing section, and systematically applied in the following.
A kinetic energy conservation law can also be derived
To(f)=\tan(6,—0), 2 according to the following assumptions. First, we recall that
) . the incoming flow decelerates according to the friction Cou-
where and 6, are constants fixed by the granular materials. ;b jaw and stops at the origin. Its velocity just before
For sand\=0.4+0.05, §,=27°+3° andA=0.55-0.05, 6 jypacting the sandpile at=X(t) is then known. At impact
=25°%3° for glass beads, which shows thigf decreases as oo e gissipation may occur that we take into account by
0 increases and is always smaller than a maximal value ofqqming that just after impact the mean velocity of the roll-
$o=8°. In addition, it is stressed that such a behavior i, ghecies becomes =ev; wheree is a restitution coeffi-
observed only when the incoming flow is naturally trapped,ciem, practically constant according to REd], for example,
its deceleration being due to friction following the Coulomb e=0.4+0.05. The kinetic energy then becomes
law, since the stopping length(6) measurgd alon@Xbe-  _ gx(t)e?a(6) and this energy is assumed to be lost by
tween injection and arrest varies la§f) =Vo/2ga(6) where  friciion along the sandpile profile. In order to express the
a(0)=u cosf—sin 6, u being a dynamic friction coefficient, \york of the friction forces one writes the Coulomb law with
with a constant valugu=0.46=tan25° for sand Arguments  coefficientu’ (' refers to friction of sand on sand whife
from energy balance are also given suggesting &)  refers to friction of sand against the flat plate some arc of
~a(0), which from Eq.(2) favors a valued|=25° for sand.  the profileh(u,t) with x<u<X(t), the constant mass sub-
Finally, under various assumptions including scaling, a pamjtted to friction along this arc beinfj(x,t) by definition.
rametrization for the reduced profileHp(Y)=Toly  Summing all such arcs for@x<X(t) gives the total fric-
—smh(v_y)/smh(v)] is p_roposed in order to reproduce the datatjon work assumed to be equal @ This kinetic energy
whenw is properly adjusted. conservation law then reads

IIl. DETERMINATION OF THE SANDPILE PROFILES

X(t)

In this section we first show that the scaling, Ed), f L(x,t){a’ (O)[X(t) =x]+b(O)h(x,t)}dx
appears as a consequence of the mass and energy conserva-  ~°
tion laws for a decelerating flow. To derive these relations, =QX(t)e?a( ), (4)

normalizing the density to one, we consider in the spirit of
Ref.[6] d;h(x,t)=I"(x,t) as the mass added per unit time to
the sandpile at the poirix,h(x,t)). The complete deposition wherea’(6)= u'cosé—sing andb(60)= w'sin6+cosé.
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1 profiles have been collapsed onto the same curve
here using the expression in the texB8=20).
Inset: Sketch of the dependence of the average
velocity of the rolling grains along the sand front.

Now one can observe that th¥(t) dependence of Eq.
(3,4) can be eliminated ifi(x,t) andI'(x,t) have appropriate
scaling formsh(x,t) must obey Eq(1) andI'(x,t) must be
given by

(1) =Qy(y)/X(1), ©)

where y(y) is some function ofy=x/X(t) alone. The con-
servation laws(3) and (4) then become time-independent
constraints:

1
f y(y)dy=1,
0

y(y)[a’(8)(1—y)+b()H(y)]dy=€?a(d). (6)

Jl
0

Our next task is to specifX(t) and the reduced profile
H(y). One can easily obtaiX(t) from the global mass con-
servation if the mass of the rolling species is negligithés
is checked in the following sectignsince then the injected
mass Qt is equal to the sandpile masfiVh(x,t)dx
=X2(t)ly with IH:f(l)H(y)dy. This determinesX(t) in
agreement with the experimental data:

X(t)=Vat, a=Qlly. (7)

Having fixed X(t), such thatX'(t)=a/2X(t), one obtains
from the scaling form, Eq. (1), d:h(x,t)=a[H(y)
—yH’(y)]/2X(t) which is equal td"(x,t). (Here the prime
symbol indicates total derivative in the function argumkent.
Using for I'(x,t) the expression given in Ed5), one ob-
tains, since the X(t) factor cancels, H(y)—yH'(y)
=2lyy(y). Integrating this relation with the boundary con-
dition H(y=1)=0 gives

1

H(y)=2lHyfy u”?y(u)du. t)

In view of the central role devoted tg(y), we choose for

Egs. (6) and (8). Most of the deposition occurring in the
regiony=1, our choice isy(y)=(B+1)y?, whereB is a
free parameter and where the fact@+1) ensures the nor-
malization appearing in E@6). ThenH(y) given by Eq.(8)
becomesH(y)=2I4[(8—1)/))(8+1)](y—y?) and it can

be checked on this form that the reIatiQIﬂ:f(l)H(y)dy is
identically fulfilled: at this stageH(y) depends upon two
free parametersy and B, the kinetic energy constraint re-
maining to be applied. These two parameters can be ex-
pressed in term of the more physical quantitigsand T,
introduced in the first section and whose values are experi-
mentally known Ty is small andT;=1 and roughly inde-
pendent off). The result of this substitution is

H(y)=To(y—Y#), B=1+T,/To=1Ty,

| H™ T1T0/2(T1+ 2T0) z-I—O/Z (9)
It thus appears thak has to be largéit varies from 10 to 32
according to the inclination angleand this simplifies the
remaining constraint in Eq6) which becomes independent
of Bin the largeg limit. The energy conservation thus fixes
T, according to

To=2€2a(6)/b(6)=2¢e*an 6,— 0), (10)
where the last expression in E@l0) arises if u'=pu
=tan@,. This is in agreement with the experimentally ob-
served behavior given in Eq2) and gives the physical
meaning of the parametar A =2e?. For sand, a best fit of
these data withg,=25°° gives\=0.37, and for glass beads
the best fit isf,=24°° with \=0.54, giving for the restitu-
tion coefficient the realistic values=0.43 ande=0.52, re-
spectively. Figure 3 displays a fit to the experimentally ob-
served profiles using experessiof®) for H(y). The
agreement between the two shapes is remarkable.

IV. STUDY OF THE ROLLING SPECIES
In addition to the deposition ternh’(x,t), the width

it a physically realistic ansatz allowing simple integrations inr (x,t) and the mean velocity,(x,t) of the rolling grains on
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top of the sandpile, which have been introduced in Sec. lI=X"(t)F(y) with —1<n<1. In this approximations=0,
are the physical quantities used in the BCRE model to dewhere in realitys= [ X" du/v,(u,t) is the time spent by the
scribe the flow. These quantities are not experimentally mearolling species to travel from the poiiK(t),0) to the point
sured and our aim here is to show that they can be derived, &, h(x,t+5)). The previous results show thats

it is the case for the sandpile profile, in termsydfy). Asa  =xY2(t)A(y) whereA(y)=fldu/w(u)cod¢(u)) and thus
by-product these results justify the simplifications used in thq(X,H_ 5):f(xlt)[1+o(x—3/5(t))]_ The instantaneous ap-
preceding section. proximation thus gives correctly the leading behavior with

~ We first consider the quantityn(x,t) = —vr(x,t) which  time of the considered quantities.
is the rolling mass at abscisgger unit time. In the instan-

taneous  approximation m(x,t)=Q— [XVT(u,t)du
=[ol(u,t)du. Inserting in the last integral Eq5) for

I'(u,t) givesm(x,t)=QJ¥y(u)du and for the total rolling In this phenomenological analysis, the BCRE formalism
mass Qg one findSQR:J‘)O((t)m(X,t)dX:fé(t)r(xyt)[x(t) is used, but not in the usual way. We recall that in this model
—x]dx. Within the chosen ansatz for(y) these relations ©One considers a convective diffusion equation with diffusive

V. CONCLUSION

become constantD, which in our notations reads
m(x,H)=Qy*"!,  Qr=QX(t)/(B+2), 11 (d= DI (x,1)=dm(x,H) =T (x,t). (14
which in particular indicate that the total rolling mass re- This equation is used in conjunction with a functional rela-
mains small compared to the sandpile mass. tion of the form
We now turn to the determination of the mean velocity of
the flow and we denote hy(x,t) its absolute value. We have C(x,t)=r(x,t)[Adh(x,t)+ Bafh(x,t)] (15)

shown in the preceding section that its valygust after the
impaCt pOint can be derived from energy ConSideratioan determiner,h, andI” once the constanta, B, and an
and is assumed to be given byw(X(t),)=v,  ansatz forv, are given. In our case, Eql4) is implicitly
=eX(t)"q2ga()]" More generallyv(x,t) can be ob- satisfied as a convective equation since one can check that
tained for anyx by equating the kinetic energy variation and axm(xyt):F(X,t) and that its left-hand side member van-
the friction work done on the sandpile between the point§shes likeX ~>4(t). On the other hand, the E(L5) does not
X(t) and x. As in the prECEding Section, this work can be hold as it appears th&% and B are time_dependenA van-
derived in terms of’(x,t) andh(x,t) which are now given. shes likeX Y4t) and the leading term iB=X"%(t). This
Using Eq.(10) for T, and some simplifications allowed in reflects the experimental conditions, where the diffusion of
the largep regime, one finds the following scaling expres- the rolling species or shift from the repose angle is not es-
sion: sential for the dynamics of the sandpile profiles.
Before we conclude let us mention that Boutreux and
() =0 [y(2=y "= X (1) Po(y), Raphael[10] considered the stop flow problem, where a
B . layer of mobile grains hits a wall, with a modified version of
w(y)=e[2ga(0)y(2—y" ] (12 the BCRE model. Their version takes into account the inher-
ent differences between thick and thin mobile layers. Their
results show that for thick layers, a kink develops between
the immobile grains and the mobile one. For thin layers, the
height of the mobile part increases linearly with the distance
from the wall. For intermediate thickness, the kink becomes
blunt or slightly rounded. From these considerations, it ap-
pears that the case studied here, where the front is rounded,
would fall in the category of intermediate thickness of the
r(x,t)=X(t)"YR(y), R(Y)=Qy?* Y w(y)cosp(y). mobile grains. It may be interesting to solve their model for
(13)  the particular geometry considered here so a comparison be-
tween their assumed form for the conversion term and the
These relations indicate a rapid decrease of the width aftasne constructed here can be made. Since their conversion
the impact region and a slower one for the velocity. Theterm has a simple form, it would be interesting to test it more
functional shape of the velocity ¢ =v/v,) along the profile  carefully.
is sketched in the inset of Fig. 3. This velocity starts out high In conclusion, we have given an explanation of the scal-
and decreases to zero at the stopping point. The decreaseinf) law observed in this experiment, and we have proposed a
the velocity has two different regions, a region near the fronphenomenological ansatz to describe the deposition mecha-
with a fast decrease and a region towards the tail witfya nism. As a result it is possible to justify a simple analytic
dependence. expression for the sandpile profile and to obtain a detailed
We conclude this section by checking the consistency oflescription of its behavior under the variation of the inclina-
the instantaneous approximation that we have used to derit@®n angle. This description involves one parametavhich
the scaling forms of various physical quantitiééx,t) is not fixed, contrarily taT, in terms of physical quantities,

Assuming that this velocity is tangential to the sandpile pro
file and remembering that the tangent angle at absoissa
can be written asp(y), its OX component reads,(X,t)
=—v(X,t)cosd(y).

The widthr(x,t) of the rolling species is then given by
the relationr (x,t) = —m(x,t)/v4(x,t) and we obtain the fol-
lowing scaling expression:
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except through the relatiog=1+T,/Ty. It may be thus with an order parameter equation describing the transition
possible to link the determination @f, to the stress tensor between static and rolling species.

properties of the sandpile in its frontal part where it is sub-

mitted to the constraint of the incoming flow. This however AU LS SIS

needs a new formulation, such as the one proposed in Ref. We acknowledge fruitful discussions with Professor A.
[11], based on hydrodynamic equations for the flow coupledVurger and Dr. F. Rioual.
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